Structural beams, reinforcing bar and plate applications account for over 500 million tonnes of world steel production.

$9.9 billion from 2007 to 2017.

$5.8 million jobs by 2040.

The most common applications of steel use in buildings and infrastructure are made up of:

The global rebar market is expected to grow at a compound annual growth rate of 4.4% and reach a valuation of $223.7 billion by 2024

China is the leading market for rebar followed by North America.

2018 was the fourth hottest year globally behind 2016, 2015, and 2017.

Average global CO2 concentration in parts per million.

Sea levels in 2018 were the highest ever measured. The global sea level is rising to an average rate of 1.2 inches per decade.

The World Economic Forum ranked America’s overall infrastructure 9th in the world and the quality of its roads 11th.

Real infrastructure spending nationally by U.S. federal, state and local governments declined Investment in infrastructure is only one-third of that in 1960 and without action, the U.S. will lose

The National Association of Manufacturers projects the total cost of to the U.S to meet its’ ten-year infrastructure needs at $1.09 trillion.

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

Whether countering climate change or rebuilding crumbling infrastructure, the world not only needs but demands steels tough enough to withstand the seismic forces, fires, coastal flooding, 150-mph winds and rising levels of water acidity that accompany global warming.

Niobium-microalloyed rebar are the antidote.

Niobium, also known as Columbium, imparts strength, corrosion and abrasion resistance, along with improved energy absorption, fatigue properties and fracture toughness to structural steels.

Niobium, also known as Columbium, imparts strength, corrosion and abrasion resistance, along with improved energy absorption, fatigue properties and fracture toughness to structural steels.

Critical times call for structural materials that provide maximum performance and extended life at an affordable cost.

Fortifying the Future with Niobium Alloy Optimization

Niobium Steps Up

Niobium

Niobium, also known as Columbium, imparts strength, corrosion and abrasion resistance, along with improved energy absorption, fatigue properties and fracture toughness to structural steel.

The market for niobium is expected to witness a compound annual growth rate of 8.8%.

The market for niobium is expected to witness a compound annual growth rate of 8.8%.

The global rebar market is expected to grow at a compound annual growth rate of 4.4% and reach a valuation of $223.7 billion by 2024

While America’s “D+” Infrastructure Continues to Unravel

Climate Change Keeps Accelerating

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

While America’s “D+” Infrastructure Continues to Unravel

Climate Change Keeps Accelerating

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

Niobium-microalloyed rebar are the antidote.

Alloy Optimization is The Answer

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

While America’s “D+” Infrastructure Continues to Unravel

Climate Change Keeps Accelerating

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

Niobium-microalloyed rebar are the antidote.

Alloy Optimization is The Answer

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

While America’s “D+” Infrastructure Continues to Unravel

Climate Change Keeps Accelerating

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

Niobium-microalloyed rebar are the antidote.

Alloy Optimization is The Answer

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

While America’s “D+” Infrastructure Continues to Unravel

Climate Change Keeps Accelerating

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

Niobium-microalloyed rebar are the antidote.

Alloy Optimization is The Answer

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

While America’s “D+” Infrastructure Continues to Unravel

Climate Change Keeps Accelerating

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

Niobium-microalloyed rebar are the antidote.

Alloy Optimization is The Answer

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

While America’s “D+” Infrastructure Continues to Unravel

Climate Change Keeps Accelerating

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

Niobium-microalloyed rebar are the antidote.

Alloy Optimization is The Answer

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

While America’s “D+” Infrastructure Continues to Unravel

Climate Change Keeps Accelerating

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

Niobium-microalloyed rebar are the antidote.

Alloy Optimization is The Answer

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

While America’s “D+” Infrastructure Continues to Unravel

Climate Change Keeps Accelerating

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

Niobium-microalloyed rebar are the antidote.

Alloy Optimization is The Answer

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

While America’s “D+” Infrastructure Continues to Unravel

Climate Change Keeps Accelerating

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.

Niobium-microalloyed rebar are the antidote.

Alloy Optimization is The Answer

Almost every greenhouse gas technology including the generation of thermal and renewable energy, electrification, mass transport and the hydrogen economy relies on steel as a basic building block.